SequenceData
, SequenceDataSet
,
SequenceDataList
, Modifier
or ModifierSet
object.R/AllGenerics.R
, R/Modifier-subset.R
, R/SequenceData-subset.R
subsetByCoord.Rd
With the subsetByCoord
function data from a SequenceData
,
SequenceDataSet
, SequenceDataList
, Modifier
or
ModifierSet
object can be subset to positions as defined in
coord
.
If coord
contains a column mod
and x
is a
Modifier
object, it will be filtered to identifiers matching the
modType
of x
. To disable this
behaviour remove the column mod
from coord
or set type =
NA
labelByCoord
functions similarly. It will return a
SplitDataFrameList
, which matches the dimensions of the aggregated
data plus the labels
column, which contains logical values to indicate
selected positions.
subsetByCoord(x, coord, ...)
labelByCoord(x, coord, ...)
# S4 method for Modifier,GRanges
subsetByCoord(x, coord, ...)
# S4 method for Modifier,GRangesList
subsetByCoord(x, coord, ...)
# S4 method for ModifierSet
subset(x, name, pos = 1L, ...)
# S4 method for ModifierSet,GRanges
subsetByCoord(x, coord, ...)
# S4 method for ModifierSet,GRangesList
subsetByCoord(x, coord, ...)
# S4 method for Modifier,GRanges
labelByCoord(x, coord, ...)
# S4 method for Modifier,GRangesList
labelByCoord(x, coord, ...)
# S4 method for ModifierSet,GRanges
labelByCoord(x, coord, ...)
# S4 method for ModifierSet,GRangesList
labelByCoord(x, coord, ...)
# S4 method for SplitDataFrameList,GRanges
subsetByCoord(x, coord, ...)
# S4 method for SequenceData
subset(x, name, pos = 1L, ...)
# S4 method for SequenceData,GRanges
subsetByCoord(x, coord, ...)
# S4 method for SequenceData,GRangesList
subsetByCoord(x, coord, ...)
# S4 method for SequenceDataSet
subset(x, name, pos = 1L, ...)
# S4 method for SequenceDataSet,GRanges
subsetByCoord(x, coord, ...)
# S4 method for SequenceDataSet,GRangesList
subsetByCoord(x, coord, ...)
# S4 method for SequenceDataList
subset(x, name, pos = 1L, ...)
# S4 method for SequenceDataList,GRanges
subsetByCoord(x, coord, ...)
# S4 method for SequenceDataList,GRangesList
subsetByCoord(x, coord, ...)
# S4 method for SequenceData,GRanges
labelByCoord(x, coord, ...)
# S4 method for SequenceData,GRangesList
labelByCoord(x, coord, ...)
# S4 method for SequenceDataSet,GRanges
labelByCoord(x, coord, ...)
# S4 method for SequenceDataSet,GRangesList
labelByCoord(x, coord, ...)
# S4 method for SequenceDataList,GRanges
labelByCoord(x, coord, ...)
# S4 method for SequenceDataList,GRangesList
labelByCoord(x, coord, ...)
a SequenceData
, SequenceDataSet
,
SequenceDataList
, Modifier
or ModifierSet
object.
coordinates of position to subset to. Either a GRanges
or
a GRangesList
object. For both types the 'Parent' column is expected to
match the transcript name.
Optional parameters:
type
: the modification type used for subsetting. By default
this is derived from the modType(x)
, but it can be overwritten using
type
. It must be a valid shortName for a modification according to
shortName(ModRNAString())
or shortName(ModDNAString())
(depending on the type of Modifier class) and of course be present in
metadata column mod
of coord
. To disable subsetting based on
type, set type = NA
.
flanking
: a single integer value to select how many flanking
position should be included in the subset (default: flanking = 0L
).
merge
: TRUE
or FALSE
: Should the
overlapping selections be merged? This is particular important, if flanking
value != 0L
are set. (default: merge = TRUE
).
perTranscript
: TRUE
or FALSE
: Should the
positions labeled per transcript and not per chromosome?
(default: perTranscript = FALSE
).
Optional: Limit results to one specific transcript.
Optional: Limit results to a specific position.
If 'x' is a
SequenceData
or
Modifier
: a SplitDataFrameList
with elments per transcript.
SequenceDataSet
,
SequenceDataList
or
ModifierSet
: a SimpleList
of
SplitDataFrameList
with elments per transcript.
data(msi,package="RNAmodR")
mod <- modifications(msi)
coord <- unique(unlist(mod))
coord$score <- NULL
coord$sd <- NULL
subsetByCoord(msi,coord)
#> $SampleSet1
#> SplitDataFrameList of length 6
#> $`2`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 34 0.900932
#>
#> $`4`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 35 0.899622
#>
#> $`6`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 34 0.984035
#>
#> $`7`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 67 0.934553
#>
#> $`9`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 7 0.709758
#>
#> $`11`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 35 0.874027
#>
#>
#> $SampleSet2
#> SplitDataFrameList of length 6
#> $`2`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 34 0.998134
#>
#> $`4`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 35 0.856241
#>
#> $`6`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 34 0.992012
#>
#> $`7`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 67 0.942905
#>
#> $`9`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 7 0.766484
#>
#> $`11`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 35 0.971474
#>
#>
#> $SampleSet3
#> SplitDataFrameList of length 6
#> $`2`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 34 0.953651
#>
#> $`4`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 35 0.976928
#>
#> $`6`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 34 0.993128
#>
#> $`7`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 67 0.943773
#>
#> $`9`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 7 0.681451
#>
#> $`11`
#> DataFrame with 1 row and 1 column
#> score
#> <numeric>
#> 35 0.954782
#>
#>