stats returns information about reads used in the RNAmodR analysis. Three modes are available depending on which type of object is provided. If a SequenceData object is provided, a BamFile or BamFileList must be provided as well. If a Modifier object is used, the bam files returned from the bamfiles function are used. This is also the case, if a ModifierSet object is used.

stats(x, file, ...)

# S4 method for SequenceData,BamFile
stats(x, file, ...)

# S4 method for SequenceData,BamFileList
stats(x, file, ...)

# S4 method for Modifier,missing
stats(x)

# S4 method for ModifierSet,missing
stats(x)

Arguments

x

a SequenceData, Modifier or ModifierSet object

file

a BamFile or BamFileList, if x is a SequenceData object.

...

optional parameters used as stated here (except minQuality), if x is a SequenceData object.

Value

a DataFrame, DataFrameList or SimpleList with the results in aggregated form

Examples

library(RNAmodR.Data)
library(rtracklayer)
sequences <- RNAmodR.Data.example.AAS.fasta()
#> see ?RNAmodR.Data and browseVignettes('RNAmodR.Data') for documentation
#> loading from cache
annotation <- GFF3File(RNAmodR.Data.example.AAS.gff3())
#> see ?RNAmodR.Data and browseVignettes('RNAmodR.Data') for documentation
#> loading from cache
files <- list("SampleSet1" = c(treated = RNAmodR.Data.example.wt.1(),
                               treated = RNAmodR.Data.example.wt.2(),
                               treated = RNAmodR.Data.example.wt.3()),
              "SampleSet2" = c(treated = RNAmodR.Data.example.bud23.1(),
                               treated = RNAmodR.Data.example.bud23.2()),
              "SampleSet3" = c(treated = RNAmodR.Data.example.trm8.1(),
                               treated = RNAmodR.Data.example.trm8.2()))
#> see ?RNAmodR.Data and browseVignettes('RNAmodR.Data') for documentation
#> loading from cache
#> see ?RNAmodR.Data and browseVignettes('RNAmodR.Data') for documentation
#> loading from cache
#> see ?RNAmodR.Data and browseVignettes('RNAmodR.Data') for documentation
#> loading from cache
#> see ?RNAmodR.Data and browseVignettes('RNAmodR.Data') for documentation
#> loading from cache
#> see ?RNAmodR.Data and browseVignettes('RNAmodR.Data') for documentation
#> loading from cache
#> see ?RNAmodR.Data and browseVignettes('RNAmodR.Data') for documentation
#> loading from cache
#> see ?RNAmodR.Data and browseVignettes('RNAmodR.Data') for documentation
#> loading from cache
msi <- ModSetInosine(files, annotation = annotation, sequences = sequences)
#> Import genomic features from the file as a GRanges object ... 
#> OK
#> Prepare the 'metadata' data frame ... 
#> OK
#> Make the TxDb object ... 
#> OK
# smallest chunk of information
stats(sequenceData(msi[[1L]]),bamfiles(msi[[1L]])[[1L]])
#> DataFrame with 12 rows and 6 columns
#>     seqnames seqlength    mapped  unmapped          used     used_distro
#>     <factor> <integer> <numeric> <numeric> <IntegerList>          <List>
#> 1       chr1      1800    197050         0        159782 83,1252,860,...
#> 2       chr2        85      5863         0          2459     2,16,16,...
#> 3       chr3        76     76905         0         63497 35,478,4106,...
#> 4       chr4        77      8299         0          6554     6,27,36,...
#> 5       chr5        74     11758         0          8818  520,105,93,...
#> ...      ...       ...       ...       ...           ...             ...
#> 8      chr8         75    144293         0        143068    14,44,48,...
#> 9      chr9         75     13790         0          9753     1,49,43,...
#> 10     chr10        85     19861         0         17729    35,21,10,...
#> 11     chr11        77     10532         0          9086   53,92,185,...
#> 12     *             0         0    961095            NA              NA
# partial information
stats(sequenceData(msi[[1L]]),bamfiles(msi[[1L]]))
#> DataFrameList of length 3
#> names(3): treated treated treated
# the whole stats
stats(msi)
#> List of length 3
#> names(3): SampleSet1 SampleSet2 SampleSet3